
MCell4 with Python API - 
Status Update

Adam Husar, Thomas M. Bartol
Salk Institute 
11/19/2020



Contents
● MCell - particle-based reaction dynamics 

simulator
● Motivation for Python API for MCell
● New MCell4 implementation
● Model structure
● MCell4 architecture
● BioNetGen library
● Validation and testing
● Demonstration 
● Performance results
● Conclusion

2



Current MCell and new Python Interface
● MCell3 uses as input a domain specific 

language called MDL (Model Description 
Language)

○ The definition is mostly static and prescribed, 
still capable to describe a wide range of 
processes

● Python provides capabilities to do any 
manipulations once the simulation is 
running such as:

○ Change simulated state based on what’s going 
on in the simulation

○ Interact with external simulators

MDL

Model 
representation in 
CellBlender

MCell

Model 
representation in 
Python

one of

3



MCell4 - New MCell Implementation

● MCell3 is implemented in the C language
○ It has gotten complex over the >15 years of development
○ Practically impossible to parallelize, hard to do substantial changes

● New implementation in C++
○ Provides Python API
○ Prepared for parallelization
○ Easier extensibility
○ Native support for BioNetGen species and reactions

4



Base MCell4 Model Structure
● Having a defined structure helps with orientation in models 
● Allows to create reusable models and libraries

 

model.py

subsystem.py instantiation.py

geometry.py

observables.py

arrows show dependencies

parameters.py
(used by all 
other files)

5



Modularity
● Each subsystem (pathway) definition is independent and can be merged with others
● Requires uniform naming of substrates

model

instantiation:
what molecules I will 
have initially in my 
system and what is 
the geometry

geometry 
objects 1

observables:

what do I need 
to know about 
my simulated 
system

parameters & 
subsystem 1:

definition of a 
pathway that 
affects the 
process I am 
studying

parameters & 
subsystem 2:

definition of 
another 
pathway

not all dependencies are 
shown here

geometry 
objects 2

parameters & 
subsystem 3:

and one more 
pathway

6



Overall Architecture of MCell4

BNG Library

MCell4 Engine

Scheduler Events

Simulation State

LibMCell

MCell3 MDL 
Parser

Species Reactions

7

Python Interface

Model Representation



Python API Definition and Generator
Definition of classes in YAML format

Python interface to 
C++ code 

Base C++ classes 
that hold the model 
representation

API definition for 
syntax-directed 
editors

Documentation 

API 
generator

Constant names 
used in API (for 
Python generator)

8



BioNetGen Library
● The preferred way to define species and reactions in MCell4 models is in the 

BioNetGen language
● Implemented new BNG library

○ Existing NFSim is very useful but hard to maintain
○ Designed with independence on MCell4 in mind, hopefully useful in other tools 
○ New implementation contains:

■ BNGL parser, classes to represent BNGL constructs, BNG reactions engine

● BNGL parser testsuite with 59 tests 
● Created a proposal on improved surface reaction definition in BNGL
● Current status

○ Validated with complex models of SynGAP and CaMKII holoenzyme & other BNGL tests
○ Each complex may have just one compartment for now
○ No support for BNGL functions

9



MCell Usage Scenarios and Model File Formats

● Code history, comments, code reviews

Data model
(JSON)

MDL 
(MCell3)

Python + BNGL
(MCell4)

10



MCell4 Testing

MDL model

mcell 
-mdl2datamodel4

Reference data 
(stored in mcell_tests repo, 
validated against MCell3, 
MCell3-R or BionetGen)

mcell -mcell4

Data model

data_model_to_pymcell

Python code (+BNGL) python + mcell.so

Output data data_output_diff

PASS/
FAIL

mcell (mcell3 mode)

data_model_to_mdl

BNGL export 11



Testing & Build Infrastructure
● New Python implementation of a test & build infrastructure
● New tests:

○ MDL: 214
○ Python/MCell4: 38
○ BNGL: 107
○ Data model: 27

● Total number of tested variants with conversions to various variants (MDL, 
Python/MCell4, BNGL, data model):

○ MCell4: 1184
○ MCell3: 433

● Single script to build CellBlender package and test it 
● Public CellBlender releases 3.4.0, 3.5.0, and 3.5.1
● Virtual machines for build on MacOS, Linux Centos 6-7, Linux Debian 8-10, 

Windows 10
12



Example of Validation - CaMKII Holoenzyme Model

● 100 000 iterations (0.1 s), average from 512 runs with different 
random seeds, BNG values are obtained with NFSim, bands 
represent standard deviation

● Molecules in MCell3R and MCell4 use diffusion constant 1e-3 cm2/s 
to emulate well-mixed solution (usual value is around 1e-6 cm2/s)

● CaM1C - CaM(C~1,N~0,camkii), CaM1N - CaM(C~0,N~1,camkii), 
KCaM2N - CaMKII(Y286~P,cam!1).CaM(C~0,N~2,camkii!1)

13



Demonstration
● Model export from CellBlender
● MCell4 Python model example
● Debugging in Eclipse

14



Performance Results - MCell3 Reactions

● Single-threaded execution, 
Linux Debian 9, AMD Ryzen 
9 3900X @3.8GHz

● MCell3 3.5.1, 
MCell4 4.0.internal.8 

15



Performance Results - BioNetGen Reactions

16



Conclusion
● Python interface

○ Subsystems (sets of species and reactions) as independent modules
○ Provides a way to model features that are not directly supported
○ Integration with external simulators
○ Usage of Python debuggers & syntax-directed editors

● New MCell4 implementation
○ Extensible, prepared for parallelization

● New BioNetGen library
○ Used for all species and reactions in MCell4
○ Planning to release it as a standalone library

● Automatic build and testing system

17



Acknowledgements
Thomas M. Bartol
Robert Kuczewski
Ali Sinan Saglam
Leo McKee-Reid
Mariam Ordyan
Oliver Ernst
Guadalupe C. Garcia
Sara Sameni
Margot Wagner
Rachel Mendelsohn

James R. Faeder
Terrence J. Sejnowski

18



Backup slides

19



Features and Code Statistics 
● Main features missing in MCell4 compared to MCell3:

○ Custom time step (needs to be validated)
○ Periodic boundary conditions
○ Checkpointing
○ Trimolecular reactions (not planned)

● Improved dynamic geometry
○ Changing geometry based on user’s Python code

● Lines of C & C++ code (without comments)

MCell3 NFSim + 
nfsimCInterface

50 516 26 851

MCell4 + 
libMCell

libBNG

22 236 8 324
20



Integration with Other Simulators
● Need to model

○ external environment
○ physics not covered by MCell

● Data exchange 
● Python to define the 

interactions
● Allow parallel execution of 

included simulators
○ e.g. using task-based parallelism

21

0us 1us 2us


